Equitable Coloring of Corona Products of Graphs

نویسندگان

  • Hanna Furmańczyk
  • K. Kaliraj
  • Marek Kubale
چکیده

In many applications in sequencing and scheduling it is desirable to have an underlaying graph as equitably colored as possible. In this paper, we consider an equitable coloring of some corona products H G of two graphs G and H. In particular, we show that deciding the colorability of H G is NP-complete even if G is 4-regular and H is . 2 K Next, we prove exact values or upper bounds on the equitable chromatic number ( ) , H G = χ where G is an equitably 3or 4colorable graph and H is an r-partite graph, a path, a cycle or a complete graph. Our proofs are constructive in that they lead to polynomial algorithms for equitable coloring of such graph products provided that an equitable coloring of G is given. As a by-product we obtain a new class of graphs that confirm Equitable Coloring Conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equitable colorings of corona multiproducts of graphs

A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted χ=(G). It is known that this problem is NP-hard in general case and remains so for corona graphs. In [12] Lin i Chan...

متن کامل

Equitable total coloring of corona of cubic graphs

The minimum number of total independent sets of V ∪ E of graph G(V,E) is called the total chromatic number of G, denoted by χ′′(G). If difference of cardinalities of any two total independent sets is at most one, then the minimum number of total independent partition sets of V ∪E is called the equitable total chromatic number, and denoted by χ′′ =(G). In this paper we consider equitable total c...

متن کامل

Equitable coloring of corona products of cubic graphs is harder than ordinary coloring

A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and it is denoted by χ=(G). In this paper the problem of determinig χ= for coronas of cubic graphs is studied. Although the prob...

متن کامل

Equitable Colorings of l-Corona Products of Cubic Graphs

A graph G is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest integer k for which such a coloring exists is known as the equitable chromatic number of G and it is denoted by χ=(G). In this paper the problem of determinig the value of equitable chromatic number for multic...

متن کامل

Equitable Coloring of Interval Graphs and Products of Graphs

We confirm the equitable ∆-coloring conjecture for interval graphs and establish the monotonicity of equitable colorability for them. We further obtain results on equitable colorability about square (or Cartesian) and cross (or direct) products of graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013